The annual IEEE 2002 ASIC/SOC Conference is preparing for its 15th conference in Rochester, New York, from September 25th through the 28th, and while last year's conference on Sept. 12th had to be canceled, this year's conference will be better than ever.

The ASIC/SOC Conference, sponsored by the Circuits and Systems Society of the Institute of Electrical and Electronics Engineers, covers all aspects of Application Specific Integrated Circuits and Systems on a Chip, and attracts over 200 ASIC/SOC engineers, researchers, and educators from around the world.

ASIC/SOC offers industry a place to learn about the most current ASIC/SOC developments and hear leaders in the field, such as Wilf Corrigan the founder and CEO of LSI Logic, and Hirokazu Hashimoto the President and CEO of NEC Electronics, address current issues facing the industry.

While ASIC/SOC is an excellent place for engineers to learn about the most recent engineering  developments, it is also an ideal place for companies to reach a very focused audience about advances in CAD and EDA tools, ASIC components/boards, equipment, and career opportunities.

Again this year, ASIC/SOC will accept a limited number of Corporate Sponsors for coffee breaks, cocktail parties, and our banquet. Sponsors will appear in the ASIC/SOC published program, appear on the ASIC/SOC web page, and have the opportunity to exhibit and display posters and distribute brochures for the entire conference.

If your company is interested in sponsoring a break at ASIC/SOC 2002 please contact me at the address below or the ASIC/SOC  Conference office at  301-527-0900 x104, but either way, please distribute the Call for Papers to your employees world-wide and visit the  ASIC/SOC 2002 web page at


Dr. Richard Auletta, Ph.D.
Publications/Publicity Chair ASIC/SOC 2002

Become an ASIC/SOC 2002 Corporate Sponsor

Banquet Speaker

Kumar Krishen
Society for Design and Process Science (SDPS)

Dr. Krishen is the Chief Technologist for the Technology Transfer and Commercialization Office, NASA Johnson Space Center, Houston, Texas, responsible for developing strategies for joint research, technology projects and plans with, industries, universities, other NASA centers and government agencies. Currently, Dr. Krishen is on an IPA (Intergovernmental Personnel Act) at Virginia Tech serving as University Fellow for Technology Transfer in the Office of Special Initiatives and visiting Professor in Electrical and Computer Engineering. He also has represented JSC as the Principal Technologist on the NASA Council on Science and Technology. His academic degrees are from Kansas State University (Ph. D. and M. S.), Calcutta University (M. Tech and B. Tech), and Jammu and Kashmir University (B. A.) in electronics, electrical engineering, radio physics, and mathematics. Dr. Krishen was an Assistant Professor in Electrical
Engineering at Kansas State University before joining Lockheed in 1969 as Staff Scientist. In 1976, he joined NASA and has held key positions in Advanced Programs in Earth Observations, Science Payloads, Experiment Systems, Tracking & Communications, Mission Support, New Initiatives, and technology R& D. Dr. Krishen was nominated by Governor George W. Bush and confirmed by the State Senate of Texas to the Texas Board of licensure for Professional Medical Physicists in 1999 for a five year term. Authoring more than 130 technical papers/ reports, Dr. Krishen is a Fellow of the
Society for Design and Process Science (SDPS). He is the recipient of many awards, medals, and commendations from universities, industry, and government organizations, and is listed in Who is Who in the World, Men of Achievement, Personalities of America, and 2000 Outstanding People of the 20th Century and was commissioned “Honorary Texan” by Governor Perry in 2001.

Abstract: Human Exploration and Development of Space (HEDS) is one of five key NASA strategic enterprises for opening the space frontier by exploring, using and enabling the development of space, and expanding the human experience into the far reaches of space.  Goals of HEDS are: increasing human knowledge of nature’s processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. Space missions are designed and executed to accomplish these goals.  A crucial aspect of these missions is the development of infrastructure to optimize the safety, productivity, and costs. A major component of the mission execution is operations management.  NASA’s International Space Station is providing extensive experience in both infrastructure and operations.  Operations include planning; scheduling; training; real time monitoring of data and systems; command and control; communications; and post mission data analysis.  In view of this enormous scope, a vigorously organized approach is needed to implement successful space, planet, and ground-based operations. This entails wise and efficient use of both technical and human resources.   This has lead to the use of automated and intelligent systems in the past to accomplish both manned and unmanned missions.  However, many revolutionary technologies currently being pursued by research and technology (R&T) communities may find an important role in making space missions safe, reliable, and cost-effective. These technologies include ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high temperature superconductivity; nano-technology; variable specific impulse magnetoplasma rocket; fuzzy logic; wavelet technology; and neural networks. In this presentation, an overview of these technologies will be presented, along with their application to space missions.